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Biochemical dynamics are often determined by series of single molecule events such as gene
expression and reactions involving protein concentrations at nanomolar concentrations. Molecular
fluctuations, consequently, may be of biological significance. For example, heterogeneity in clonal
populations is believed to arise from molecular fluctuations in gene expression. A realistic
description, therefore, requires a probabilistic description of the biochemical dynamics as
deterministic descriptions cannot capture the inherent molecular fluctuations. The Gillespie
algorithm[D. T. Gillespie, J. Phys. CherBi1, 2350(1977] is a stochastic procedure for simulating
chemical systems at low concentrations. A limitation of stochastic kinetic models is that they require
detailed information about the chemical kinetics often unavailable in biological systems.
Furthermore, the Gillespie algorithm is computationally intensive when there are many molecules
and reaction events. In this article, we explore one approximation technique, well known in
deterministic kinetics, for simplifying the stochastic model: the quasi-steady-state assumption
(QSSA. We illustrate how the QSSA can be applied to the Gillespie algorithm. Using the QSSA,
we derive stochastic Michaelis—Menten rate expressions for simple enzymatic reactions and
illustrate how the QSSA is applied when modeling and simulating a simple genetic circu00®
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I. INTRODUCTION in a stochastic formulation does not imply the system has
) ) converged to a static ratio of monomer and dimer molecules.

At the level of the cell, the chemical dynamics are oftengaiher “only the likelihood of a particular ratio has converged
determined by the action of c_JnIy a few molgcules and, CON{y a static distribution. If the reactions events are fast, then
sequently, molecular fluctuations may dominate the dynam,

. . ._simulating even a short time interval of the dimerization re-
ics. These molecular fluctuations appear to have many im

A i action at steady state is computationally intensive. From a
portant consequences in bioloby.Gene expression, for . N : . -
modeling perspective, information regarding the association

example, involves a series of single molecule events. I:Iucémd dissociation rates is rarely available in a biological sys
tuations in gene expression may lead to a divergence of faté y 9 Y

and, consequently, to nongenetic population heterogetheity. tem.tOftten, thetrc]).nly t'ﬂf(irmatlorl svaélfa blil |sta d|i'ss;03|§tltc>n
Likewise, fluctuations in gene expression and protein con®onstant, something that cannot be directly transiated into a

centrations have also been implicated in phenotypic variatiofi0c"astic model. As we are often not interested in fast fluc-
in clonal populations-7 Deterministic models, consequently, f[uatlops, but rath_er integrated blocheml_cal reaction r_letworks
do not always accurately describe the chemical dynamics fdfVolving many different molecular species and reactions, we
such systems, as statistical averages do not account for mgeek to reduce both the model and computational complexity.
lecular fluctuations, and these fluctuations may have a pro- [N this article, we consider the Gillespie algorithm for
found effect on the physiology of the cell. To model molecu-Simulating ~ stochastic chemical kinetit8. While the
lar fluctuations, a probabilistic model of the chemical Gillespie algorithm is a simple procedure for exactly simu-
dynamics is often necessary. lating stochastic kinetics, the algorithm is slow. Gibson and
A defining attribute of probabilistic kinetic models is that Bruck'® have recently proposed a streamlined version of the
they account for each molecule and every reaction event. Fdgillespie algorithm. However, the core algorithm is same:
complex processes involving many species and reactiongach molecule and reaction event is accounted for. If one
this fine detail poses many modeling and computational barwants to reduce the complexity, then one needs to look for
riers. Consider, for example, a dimerization reaction atapproximations to the model. One strategy is to consider the
steady state. Unlike a deterministic formulation, steady statelynamics at asymptotic limits. For example, as the number
of molecules increase, one can approximate the molecular

aElectronic mail: ¢_rao@Ibl.gov fluctuations as a realization of Brownian motitrt? The
YElectronic mail: aparkin@Ibl.gov discrete model then becomes a continuous model in the form
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of a stochastic differential equation or Langevin equationsubject to the initial conditiorP(Xxq;0). Thereader is di-
Alternatively, one can consider a time-scale separationiected to Ref. 9 for a discussion of the assumptions underly-
where a subset of species is asymptotically at steady state amg stochastic kinetics.

the time scale of interest. This approximation is known as the ~ When one applies the QSSA in deterministic kinetics,
guasi-steady-state assumpti@@SSA. The QSSA reduces one eliminates the differential equations describing the inter-
the model complexity and, consequently, the computationainediate species by setting them equal to zero. In stochastic
complexity by effectively reducing the number of molecular kinetics, a single equation describes the probability of a
species and reactions. Hence, it eliminates the fast dynamiggven state rather than a given chemical species. Conse-
that contribute most to the computational cost and are rarelguently we need to separate the primary species from the
of interest. Model reduction is particularly useful when we intermediate species in order to apply the QSSA. We sepa-
are unable to ascertain certain information from experimentsate the species by partitioning the species vextmto the
such as association and dissociation rates. The strength of teet of speciey and z wherex=(y,z). We let the vectory
QSSA is that it uses our physical intuition of the system.denote primary species and the vectatenote the interme-
Verifying its validity, therefore, is often straightforward. diate, or ephemeral, species. Substituting into &g, the
Time scale separation by adiabatic elimination has previchemical master equation for the partitioned species vector is
ously been applied to the chemical master equdtiotf The

goal of this article is to extend these results to stochastic dP(y,z;t) il

simulation and the Gillespie algorithm, and to apply the dt :go [y —vk.z=vid P(y —vk.z=vit)
QSSA to some problems common in cell biology. To the best
of our knowledge, these results are novel. —a(y,2)P(y,z;t)], 2

wherev} andvi denote the associated partitionugf. Using

the definition of conditional probabilities, we can represent
Il. THE QUASI-STEADY-STATE ASSUMPTION the joint probability as

When the intermediate species in a reaction network are P(y,zt)=P(Z]y:t) P(y;t). 3)
transitory and highly reactive, one commonly assumes in de-
terministic kinetics that theetrate of formation is approxi- Using the chain rule of differentiation, the master equation
mately equal to zero. Examples of transitory intermediatehecomes
species include enzyme-substrate complexes and surface spe-
cies. We refer to this assumption as the quasi-steady-state dP(z]y;t) dP(y;t)

assumption (QSSA, though it is also referred to as PO g — TPEYID —

Bodenstein—Semenov kinetics or the pseudo-steady-state as-

sumption. One can establish the validity of the QSSA using . , v.

singular perturbation theory for differential equatidhdhe —gfo [a(y,z—vp) P(z—vgly—vi;t)

utility of the QSSA is that it allows us to reduce the dimen- _

sion of the model by eliminating the intermediate species XP(y—vk;t)—ay,2)P(zly;t) P(y;t)], (4)

from the model. The intermediate species are implicitly ac- ]

counted for by assuming that they are in quasi-steady state " order to apply the QSSA, we first need to assume that

with the primary species. By quasi-steady state, we meaf cond|t|o_r!a| ony Is Marlfowa_n. In o_ther Words,_ for ﬂxegl_

that on the time scale of interest the instantaneous rates gt conditional probability distribution of the intermediate

change of the intermediate species are approximately equaPeciesP(z|y:t) approximately satisfies the master equation

to zero. As we demonstrate, we can also use the QSSA to

reduce the problem dimension when we consider a stochastic 9P(ZY:t)

description of the chemical kinetics. dt
Consider a homogeneous mixturerothemical species

that undergam reactions in a closed vessel of fixed volume —ady,2)P(Zy;t)] ®)

and constant temperature. Let thelimensonal vectox de- o 6 time scales of interest. The QSSA in stochastic kinet-

note the number of molecules of each species. For each IS then assumes that tmet rate of change for the condi-
action, let the functiom,(x) denote the propensity of theh

ion. In oth ds. th babilitv that kié ) tional probability distribution of the intermediate species
reaction. In other words, the probability that reaction P(zly:t) is approximately equal to zero:
with occur in the time intervatlt is a,(x)dt+o(dt), where

m

~k§0 [aw(y—v).z—vH)P(z—vily;t)

o(x) satisfies the condition lig,o0(x)/x=0. Let the dP(z]y;t)
n-dimensional vectoo denote the stoichiometry associated ~ ———— ~0. (6)
with the kth reaction. The probability?(x;t) of x species at
time t is given by the master equation An immediate consequence of the second assumpipis
m that the conditional probability functioR(z|y;t) is time in-
dP(x;t) variant: P(z]y;t)~P(z]y). If we substitute Eq(6) into (5),

dt =k§=:O X v PGt ~adx) POxiD)] then P(z]y) satisfies the approximate steady-state master

1 equation
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m

EO [a(y—v},z—vH)P(z—vily;t) —au(y,z)P(

zly;t)]

0. (7)

It is important to note that we make two assumptions in order

to apply the QSSA to stochastic kinetics.
If we apply the QSSSA, the approximate chemical mas-
ter equation for the subset of species

(y,

P(z]y) ~k§O [aw(y—v).z—vf)

X P(z—vily—v{)P(y—vy;t)

—ay(y,2)P(z]y)P(y;t)] (8)

As X,P(z]y;t)=1, we can obtain the following approximate
master equation for the marginal distributiBy;t):

dP(y;t) dP(y;t
(y 2 y)

P(z]y)

m
~EZ go [aw(y—v),z—vpP(z—vi|y—v})

XP(y—vg;t)—au(y,2)P(z]ly)P(y;t)]. 9

The significance of the above equation is that we can elimi
nate the intermediate speciesfrom the chemical master
equation(8) by summing over the states af This elimina-
tion also implies thay is separately Markovian—a limiting
assumption of QSSA® Simplifying the notation of Eq(9),

Stochastic chemical kinetics 5001
master equation is linear, we are usually unable to solve it
either analytically or numerically as the dimension explodes
with the number of molecules and reactions. For example, if
we consider a reaction

A=B=C,

then the order of the chemical master equation is equal the
number of possible molecular combinations. For 200 mol-
ecules, there are one million different molecular combina-
tions. While for most applications it either impractical or
infeasible to solve the chemical master equation, we can
readily generate realizations of the stochastic process de-
scribed by the chemical master equation. These realizations
are usually sufficient to address our questions. If necessary,
one can obtain the moments of the chemical master equation
using Monte Carlo strategies.

In some cases one can algebraically reduce the chemical
master equation as discussed in Secs. IV and V. One can then
apply the Gillespie algorithm to the reduced system de-
scribed by the stoichiometric matri¥’ and propensity func-
tions by (). When algebraic expressions do not exist for
b.(-), which often is the case, then one needs to employ a
modified Gillespie algorithm. We assume that one possesses
expressions for the conditional probability functi®z|y).

The limitation of this approach is that exact expressions for
P(z]y) are computationally unwieldy as illustrated in Sec.
VI. One may circumvent this problem either by replacing the
conditional expectatiob,(-) of the functiona,(-) with the
function of the conditional expectatiom(E[z]y),y) or by
approximating the conditional probabilityP(z]y) as a

we obtain the following approximate master equation solelyGaussian. Both of these alternative are discussed in Sec. VI.

in terms of primary specieg

m

dP(y;t
((;t/ : = 2 [bly =l P(y=ok;0) =by(y)P(Y;D],
(10
where
bk<y>é§ ay,2)P(zly). (12)

The functionalb,(-) is the conditional expectation of the
functionala,(-).

When we apply the QSSA, we implicitly assume that we
can expand the conditional probability functi®{z|y;t) in
some parametet such that

P(zly;t)=P(zly)+o(e).

The QSSA is exact whea=0 and the errors associated with
the QSSA are roughly proportional to magnitudeeofOne
obtains the parameterby scaling parameters in the mod&I.

As we demonstrate with examples in Secs. IV and V, the
Markovian assumption can also arise from the same scaling

arguments.

I1l. AN ALGORITHM FOR APPROXIMATE STOCHASTIC
SIMULATION

A. Modified Gillespie algorithm

Data: Partitioned stoichiometric matrix¥;v?], the set
of propensity functions,(-) such thav{+0, the stationary
conditional probability density(z|y), and the initial num-
ber of primary specieg(0).

Initialization: Sett=0.

Step 1: Generate the conditional random varialzlg)
from the stationary distributioR(z(t)|y(t)).

Step 2: Compute reaction probabilities

pr=ay(y(t),z(t) for k=1,...m.

Step 3: Generate two uniformly distributed pseudo-
random variables; andr, on (0,1). Set

log(ry)
=R oPx

and choosg such that

T=—

i-1 j

E pk<f22 Pk 2

Step 4: Update the number of species

y(t+7)=y(t)+v}
and lett<t+ 7. Go to Step 1.

The chemical master equation provides a complete deit is important to note that the modified Gillespie algorithm
scription for the chemical kinetics. Even though the chemicadescribed above does not generate exact realizations of the
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master equation, even when the assumptions underlying thetate approximation for the enzyme-substrate complex ES to
QSSA are strictly true as it does not employ the functionderive the rate law for the enzymatic reactiti®). If we
b.(-). However, it provides a simple procedure for separatassumd E],/[ S]o=0, where[ S], denotes the initial or av-
ing time scales in stochastic models, and our experience irerage concentration & thend[ ES]/dt~0 and one obtains

dicates the approximation is often valid. the approximation
As we have mentioned in the Introduction, Gibson and
Bruck'® have provided streamlined version of the Gillespie d[s] __ Vimnal S]
algorithm. Their techniques are also applicable when one  dt KntI[S]’
applies the quasi-steady-state assumption. The interested _
reader is directed to their article. whereV g =k Elo, andKy,=(k_1+kp)/k;. The reader is

directed to the literatut&? for a detailed deviation.
IV. EXAMPLE: ENZYME KINETICS AND THE We can equivalently apply the quasi-steady-state ap-
MICHAELIS—MENTEN ASSUMPTION proximation to the chemical master equation. Our discussion
_ _ _ _is limited to the case when there are a fixed number of en-
To illustrate the QSSA, consider the simple enzymaticzyme molecules. One can tacitly assume that the QSSA is

reaction: equivalent to assuming that the propensity function for the
kq reaction
E+S=ES (123
k_q S—Product
ES— . Product E (12p s given by
where E denotes the enzyme and S denotes the substrate. If VS
we use a deterministic descriptiofmass action of the a(s):Km—iS,
m

chemical dynamics, then we obtain the following set of dif-

ferential equations where V.,=k-e, and K, is given above. The resulting

drs chemical master equation is then
—r = ki SI([E]o—[ES]) +k_4[ES], (133
dt dP(s;t)

d[ES] dt

g =~ (K1t K[ES]+ K[ SI((Elo~[ES]), (13D
subject to appropriate boundary conditions. Our goal is to
where [X] denotes the concentration of species X andprovide a mechanistic derivation.

=a(s+1)P(s+1;t)—a(s)P(s;t),

[Elo=[E]+[ES]). If we use a stochastic description of the In order to derive the quasi-steady-state solution to the
chemical dynamics, then the chemical master equation is stochastic formulation, it is convenient to recast the chemical
dP(s,est) master equation in terms of the total amount of substrate,

=—[kis(eg—es)+(k_;+ky)es|P(s,est) free and bound. Les;=s+es denote the total amount of

dt substrate present. In this example the primary spg@ehe
+ky(s+1)(ep—est+1)P(s+1es—1;t) substrates; and the intermediate specigsis the enzyme
complexes We can rewrite the chemical master equation
+k_q(est1)P(s—1lest+1;t) (14) as
+ky(est+1)P(s,est+1;t), (14 dP(essy:t)
subject to the appropriate boundary conditions, feres — qr —  LKi(St—es)/(&—es)+ (k-1 tkp)es]
ande, are the number of substrate molecules S, number of
enzyme complexes ES, and total number of enzymes E, re- X P(essr;t)+ki(st—est1l)
spectively. , _ o X (ep—es+1)P(es—157;t)
Numerous articles have been written on enzyme kinetics
using a stochastic framewotk:?* These articles aimed to +k_i(est1)P(est1sr;t)+ky(est1)

solve the chemical master equation for the isolated enzy-

matic reaction(12) either by obtaining approximate expres-

sions for first two moment§mean and variangeof the T4 gptain a scaling solution, we nondimensionalize the fol-

chemical master equation, characterizing the equilibriumo\,\,ing variables:

probability by assuming the reactidt2b) is reversible, or

by characterizing the initial velocity phase. Our derivation  _ st _, es

differs from the above references, because we employ the S:s_o’ e:e_o’ E:s_o

QSSA and scaling arguments to reduce the dimension of the

chemical master equation. We do not attempt to solve thés the variables are not longer integers, we introduce the

chemical master equation for this isolated equation. incremental variabled=1/e,. We also rescale time as
When the concentration of substrate is much larger thar- egt. If we make the substitutions ifil5), we obtain the

the enzyme concentration, one may use the quasi-steadgraster equation

X P(est+1sr+1;t) (15
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FIG. 1. A comparison of the exact solution and the

h Michaelis—Menten approximation. Both figures show
the production of product as a function of time. The

4 black lines denote the exact solution and the gray lines
denote the Michaelis—Menten approximation. The solid

L line denotes the mean and the dashed lines denote one

1
0 20 40 60 80 100
Time (sec)

],
120 140 160 standard deviation away from the mean. The mean and
standard deviation were evaluated from 50 000 realiza-

Product

0 1 L 1 1

tions of the system. The upper plot shows the results for
10 enzyme and 100 substrate molecules and the lower
plot shows the results for 1000 enzyme and 100 sub-
strate molecules. Note that when enzyme is in excess
(lower ploY), the QSSA predicts the substrate is con-
sumed withih 1 s whereas the exact model predicts
nearly 50 s. Both examples used the kinetic parameters:
T k;=1, k_;=1, andk,=0.1.

0 10 20 30 40
Time (sec)

dP(es; L (kgtk
e(dei’TS'T):— ky(s—ee)(1—e)+ (1;2)4

50

X P(e,s;7)+k (s— ee+ed)(1—e+d)

K-y

60 70

Implicit in the approximation above is the assumption that
the probabilityP(e,s; 7) is analytic ine. The relation(17) is
approximate ana(e). We suspect that it is possible to de-
rive higher-order approximation, though they likely lead to
non-Markovian(or age-dependentnaster equations.

xP(e—d,s.7)+ —(e+d)P(e+d,s;7) As sy is fixed, we can interpret the relatidd?7) as the

So
k, -
+ S—(e+ d)P(e+d,s+ed;7).
0
If we sete=0, we obtain the algebraic relation
_ _ (k.iFk —
kis(1—e)+ (22)4 P(e,s;7)
0

=k;s(1—e+d)P(e—d,s;7)
k_,+k
+( 11Tkz)

(e+d)P(e+d,s; 7).
So

steady-state solution to the following master equatiorun-
scaled variables

(16)
dP(esst;t)
dt
= —[kist(ep—es) +(k-1+ky)es]
X P(egsr;t)P(st;t)+kisr(eg—es+1)
X P(es—1|st;t)P(sr;t)+(k_;+ky)(es+1)
17

X P(es+1|st;t)P(sr;t).
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act solution and the Michaelis—Menten approximation.
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Time (sec) line denotes the Michaelis Menten approximation. The
100 solid line denotes a single realization and the dashed
‘ ' ' - e lines denote one standard deviation away from the
=" mean. The parameters are the same as in Fig. 1. Note
b again that when enzyme is in excdgswer plob, the
QSSA predicts the substrate is consumed within 1 s.
°©
3
° 4
<
o
1 1 1 ]
0 10 20 30 40 50 60 70
Time (sec)

The scaling arguments therefore justify the assumptions that dP(esst;t)
we can write a separate master equatiorefronditional on gt~ ke(est1)P(est 1sr)P(st;t)
st and apply to QSSA tes In other words,

+ky(est+1)P(es+1|st+1)P(st+1;t)

dP(eiST:t)NO —k,es(eg—esg)P(esst;t)+ky(es—1)
dt

X(gp—est+1)P(es—15r;t). (18

and
If we take the marginal density, then we obtain the following

approximation to the chemical master equation

dP(esst;t dP(st;t
dPeesstit) _ pregs, o)
dt dt )
dP(ST rt)
—r— =~ keElesisrIP(st;)
If we substitute the algebraic relatidd?) into the master
equation(15), we obtain +koE[edsr+1)P(st+1;t). (19
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FIG. 3. A comparison of the exact solution and the
Michaelis—Menten approximation for the deterministic
case. Both figures show the production of product as a

Time (sec)
120 T T T T T

0 20 40 60 80

function of time. The black lines denote the exact solu-
tion and the gray lines denote the Michaelis—Menten
approximation. The upper plot shows the results for 10

enzyme and 100 substrate molecules. Both examples
used the kinetic parameterk;=1, k_;=1, andk,
=0.1. Note again that when enzyme is in excéower
plot), the QSSA predicts the substrate is consumed

Product

within 1 s.

1
0 5 10 15 20 25
Time (sec)

Note that technically summing over the statesesin (18)
does not define the expectati@fiegs;] in (19) as we sum
over the product s+ 1)P(es+1|sy). However, for this
problem, summing over the states (@8 does yield an
equivalent expression to the expectation. The conditional e

pectation is given by the expression

€0ST

E(edsT)= K—+ST
m

We then obtain an approximate chemical master equa(?

tion with the Michaelis—Menten form:

dP(srt) VmaST , VinadSt+1)

= - P(Srit) + o5

dt Kmt st Knt(srt1)
XP(st+1;t).

30

35

40

A. Numerical comparison

To investigate the accuracy and efficiency of the
Michaelis—Menten approximatiof@and the QSSA we com-

Xpared the exact solution to the Michaelis—Menten approxi-

mation. The results are shown in Figs. 1 and 2. The upper
plot shows the comparison whexg/s,=0.1 and the lower
plot shows the comparison whex/sy=10.0. When sub-
strate is in excess of the enzyme, the solution match well as
predicted by the theory. However, when the enzyme is in
xcess of the substrate, the solutions diverge significantly;
the Michaelis—Menten approximation greatly overestimates
the rate of production. This error is expected as the enzyme
is in excess of substrate. The speed of the reaction is no
longer limited by how fast the enzymes work, but rather by
the rate of association of the substrate to the enzyme. This
case clearly illustrates the limits of the Michaelis—Menten
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approximation. For comparison, the associated deterministic ko

solution is shown in Fig. 3. Note that the deterministic solu- E+! —— ProductE, (200
tions also diverge wher,/sy=10.0, thus illustrating the ks

limits of the Michaelis—Menten approximation and the E+I=El (200
QSSA in deterministic models. For the details of the simula- ks

tions, the reader is directed to Figs. 1-3. L . .
One of the goals of the QSSA is to reduce the complex-'f we use a deterministic descriptiofmass actioh of the

ity of the system. The best measure of complexity for thische_mical kir?etics, then we obtain the following set of differ-
example is the number of reactions required to consume afintial equations:
of the substrate. The efficiency of the Michaelis—Menten as-
sumption is realized by assuming that the enzyme-substrate ~“L-!
complex is in quasi-steady state. As expected, the dt
Michaelis—Menten approximation requires fewer reactions to
consume the substrate: the number of reactions equals the d[ES]

number of substrate moleculés00). The number of the re- dt =k SI[Elo—[ES]-[EID— (k-1 +k3)[ES],
actions for the exact solution was a function of the kinetic (21b
parameters and number of enzyme molecules. In the sce-

narios we investigated, approximately 2100 reactions were d[El]

required to consume the substrate in both cases: a 95% re- ~q¢ — ~ka[1([Elo—[ESI-[EID—k-4[El], (210

duction in computation. As the parametey decreased in

magnitude relative t&, andk_;, the number of reactions |f we assume[E],/[S]o~0 and[E]y/[1]o~0 where[l],
increased. And, vice versa, increaskgdecreased the num- denotes the initial or average concentration of I, then we
ber of reactions. obtain the approximation

dars
S [SI(El-[ES-[E) -k j(ES, (21

V. EXAMPLE: COMPETITIVE INHIBITION d[S] Umasdl S

As a further example of the QSSA, we considered the dt K, +[S]+K.[11/K,
simple enzymatic reaction with competitive inhibition:

ke WhereKb=k_3/k3.26
E+S=ES, (209 If we use a stochastic description, then we obtain the
koq following chemical master equation:

dP(esei,st,iT;t)
dt

=—[(ki(st—es) t+ks(it—ei))(eg—es—ei)+(k_;+k,)estk_zei]P(esei,st,it;t)

+ki(st—est1l)(gp—es—ei+1l)P(es—1lei,st,it;t)+k_j(est1l)P(estlei,st,it;t)
+ka(it—eit+1l)(eg—es—ei+1)P(esei—1st,it;t)+k _z(ei—1)P(esei—157,it;t)
Xky(est1)P(est+1lei,st+1it;t), (22

subject to the appropriate boundary conditions. In this example, the primary species are the total sglestchtehibitori,
and the intermediate species are the enzyme compksasd ei. Proceeding in the same manner as before, we nondimen-
sionalize the following variables
— St .—_iT — es _ ei A €0
s iy s YTiy s TH
and consider the transformatiai® 1/e, and 7= egt. If we make the substitutions if22), we obtain the master equation

dP(x,y,s,i_;r
A

kg — — ks — _ — —

T (smex)+ —(i—7y) |(1-x=y)

0 0

(kogt+ky)— kg = ke — — e
+———X+—=Y|P(X,Y,S,i;7)+ —(s—ex+ed)(1—x—y+d)P(x—d,y,s,i;7)

10So Solo lo

kop — — = ks — — — —_— =
+S—i(x+d)P(x+d,y,s,|;r)+ S—(I—77y+ nd)(1—x—y+d)P(x,y—d,s,i;7)

0'0 0

kg — —_— = ky, e -
+—(y—d)P(x,y—d,s,i;7)+ — (x+d)P(x+d,y,s+ed,i; 7). (23

So|0 SOIO
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If we sete=0 and »=0, then we obtain the equality

ki k _ — (keqtk)— ke I
[ L —Sﬁ(l—x—y)ﬂL (.1—2)x+ —.3ﬂP(x,y,s,i;r)
lo So 10So Splo

ke kg, I
=i—ls(l—x—y+d)P(x+d,y,s,i;7-)+ S—il(x+d)P(x+d,y,s,i;r)
0 0'0

+ 2 (1-x—y+d)P(xy—dsi;m)+ k—‘.s(V—d)P(ﬂd,V—dEi;TH k—?(ﬂd)p(ﬂd,ﬁi;ﬂ.

So Solo Solo

We can interpret the above equality as the steady-state solguasi-steady-state assumption. Likewise, we expect one may

tion to the conditional chemical master equation for the conderive many common biological rate laws for stochastic ki-

dition probability densityP(es eilst,it;t). netics such as the Hill equation and the Monod—Wyman—
In a similar manner as before, if we substitute the aboveChangeux and Koshalnd—Nemethy—Filmer models of allos-

algebraic relation into the master equati@®) and take the tery and cooperativity® One may also use similar arguments

marginal density, then we obtain the following approxima-to derive stochastic analogs to the Langmuir—Hinselwood

tion to the chemical master equation: and Hougen—Watson rate laws in heterogeneous catalysis.
dP(sr,it;t) G .
—at —koE[eseilsr,it]P(sy,it;t) VI. EXAMPLE: GENE EXPRESSION

To illustrate the quasi-steady-state assumption in con-
junction with the Gillespie algorithm, we examined a simpli-
As i is fixed, we can factor out the ter®(i+;t). In appli-  fied model of thePg promoter in bacteriophase The Py
cation, P(i1;t) is a function of other reactions in the net- promoter is an integral component of the genetic circuit con-
work. If we evaluate the expectations, we obtain the approxitrolling the lysis/lysogeny decision in the Lambda infection
mate chemical master equation in the familiar Michaelisifecycle in the Escherichia coff A stochastic model of the

+k,E[eseilst+1it]P(sr+1it:t).

Menten form: genetic circuit controlling the lysis/lysogeny decision was
dP(stlir:t) VST pro_pose_d by Arkin and c_o-worke?gxhe reader is directed to
T = @ P(sqlit;t) their article for the details of the model. We focus solely on
m T the P promoter in conjunction with the protein Cro to illus-
Viad ST+ 1) _ trate the appli(?ation and validity of the QSSA. A Qiagram
mP(sﬁ— 1ig;t), and brief description of th®g promoter and the protein Cro
m T are given in Fig. 4. The reactions and their associated param-
where eters are given in Table I.

The first assumption typically made when modeling
gene expression is to use the QSSA to obtain an expression
The goal in the preceding two sections was to demonfor the promoter activity. Shea and Ack&sproposed the
strate that Michaelis—Menten-type rate laws may be derivedbllowing deterministic model for activity of thé>; pro-

in a stochastic formulation using scaling arguments and thenoter:

K2PP=K (1 +i7/Kp).

[RNAP] exp 4Cs/RT
1+2[Cro] exp 2C23/RT+[Cro,]? exp 2C4+/RT+[RNAP] exp 2Cs/RT’

P(RNAP,—DNA)=

where[ -] denotes the concentration. Activity is defined here
as the probability that the RNA polymera@@NAP) is bound
to the promoter. In this model, Shea and Ackers applied the

Crog «— Cro—»deg
QSSA to the closed RNAP-DNA complex (RNAPDNA)
- and the Cro dimer/operator complex (¢taOg and Crg
P,

. - TR —ORg1). The parameters for the model are given in Table II.
! H The Shea—Ackers prc.Jmot.er model is equivalent in many
'[orR2] [OR1], [ cro | ways to the Langmuir—Hinselwood and Hougen—Watson
rate equations in heterogeneous catal§/5is.
FIG. 4. ThePg promoter: The promotelP, controls the expression of the In the context of stochastic kinetics. we can view the

201 nucleotide(nt) genecro. The protein Cro dimerizes and is subject to .
proteolytic degradation. The cro dimer binds to one of two operator stiesShea_ACkers promotor model as a special case of the

Or1 andOg2 and inhibits transcription by occluding th; promoter. Michaelis—Mentenkinetics with competitive inhibition. In
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TABLE |. Parameters for transcription, translation, and housekeeping reactions.

No. Reaction k¢ [
1 Cro—() 0.0025 s?

2 Cro—Cro, 0.05 M1s?t 05st?
3 Cro,+ Ogl« Cro,— Ogl (Table 11

4 Cro,+ Ogr2+ Cro,— Og2 (Table 1)

5 RNAP+DNA«—RNAP,—DNA (Table 11

6 RNAP.— DNA—RNAP-DNA, 0.014 st

7 RNAP—DNA,—RNAP-DNA,, ; 30nts?

8 Ribosome-RNAggs—Ribosome-RNAggs 0.002 Mtst

9 Ribosome-RNA,— Ribosom-RNA,, ; 100 nt st

10 RNAzgs— () 02st

this model, there is a single enzyme and two sites for inhian algebraic expression for the mean Qroncentration. We
bition (Og1 andOg2), where RNAP is the substrate and the can instead use the deterministic equilibrium value

Cro dimer is the inhibitor. The Shea—Ackers promotor

model, therefore, is valid to a first approximation when the (4Crgu+Kp)— \/(4CfQot+ Kp)2—Cro
. . d 4tot

number of RNAP and Crop dimer molecules are in excess of  Cro,=

one. From a modeling standpoint, only equilibrium data is

ilable for th . As the bindi i ia- —
available for thePg promotor. As the binding and dissocia s an approximation for the mean, where Grdenotes the

tion rates are difficult to determine, the QSSA s aconvenlengjtal amount of the protein Cro. As the amount of Cro in-

simplification. In this example, the QSSA and the associate s :
; . L reases, we expect that the conditional expectation converges
scaling arguments validate the approximation even thoug o .
o the deterministic equilibrium value almost surely. A sec-

the information necessary for a more detailed model is un- . ) ) A
available y ond alternative is to approximate the stationary distribution

One can simplify the model of theg promotor further (24) and(25) with a Gaussian distribution. We do not possess

by applying the QSSA and the Cro dimer. In their determin—SpeCiﬁC asymptotic results concerning the stationary distribu-

istic model of thePr promoter, Shea and Ackers applied the?r(i)t?usti(oz:)is:ar;d (ng))’(i::;)tlé?h ggisvggﬂdwif%zzghé;%e;'S_
QSSA to the dimer. Consider the dimerization reaction . bpr y .
variance that is inversely proportional to total amount of Cro.

16

At Aﬁ A Numerical results indicate that a Gaussian approximates the
o 2 stationary distribution$24) and (25) reasonably well when
B

the variance is 18ro,,. A similar result was reported by
If we assume there are a total & molecules N=A  Kepler and Elstori*

+2A,), the stationary distribution is given by Figure 5 shows the time course of the mean Cro dimer
K k(N2= DNy concentration using the modified Gillespie algorithm. The
P(A,=]j|N)x ] (24)  exact solution required an average of 152 000 reactions; the

(N=2j)1j12! approximate solution applying the QSSA to the Cro dimer

whenN is even, and using the two methods described above required an average
K kN2= =D of 58 600 and 79 700 reactions, respectively: at least a 50%
™ (25) reduction in computation. In both examples, we used the

(N=2j)tjr2h” modified Gillespie algorithm for the Shea—Ackers model,

whenN is odd. Generating random variables from this dis-rather than marginalizing the distribution as we did in the
tribution is relatively difficult as one needs to recalculate theMichaelis—Menten ‘f’l(af”lmes- If we increase thialrate of Cro
probabilities each time the total amount of Cro changes. Ongimerization (0.5 M™*s™) and dissociation5 s™) by a
alternative is to use the conditional expectation of Gnghe  factor of 10, then the average number of reactions increases
model of P promoter activity. Here, one approximates the© 397600 while the number of reactions for the QSSA
mean promoter activitje.g.,b.(-)] with the activity for the model does not change. We note that these kinetic rates are

mean Crg concentration. Even then, we still do not possesd!nknown and only the equilibrium dissociation constegt
is known. As evident from Fig. 5, the application of the

QSSA to the Cro dimer does not affect the accuracy of the
TABLE Il. Parameter for the Shea—Ackers model of the prométgr solution. This result was expected as over half the reactions
involved either Cro dimerization or dissociation.

P(Ay=|N)=

No. Or? Orl —AGIRT If we increase the rate of Cro dimerizatidi®.0005

1 0 M~ 1s™%) and dissociation(0.005 s1) by a factor of 100,

2 Cro 17.5 then the QSSA is no longer valid as illustrated in Fig. 6.

i gg (':';0 1375'51 Because the rate of association and dissociation are not fast
5 RNAP 20.3 relative to the dynamics of gene expression, protein synthe-

sis, and degradation, the Cro dimerization reaction never
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35 T T T T T T T

301

FIG. 5. The time course of Cro dimer concentration
i using the modified Gillespie algorithm for an average
cell lifecycle. The solid lines show mean concentration
of the Cro dimer and the dashed lines show one stan-
dard deviation away from the mean concentration. The
mean and standard deviation were evaluated using
50 000 realizations of the stochastic model. The black
lines denote the exact solution, while dark and light
b gray lines denote the solution when the QSSA is ap-
plied to the cro dimer. The dark gray lines show the
solution of the deterministic equilibrium value for the

4 Cro dimer Cr@ and the light gray lines show the solu-
tion when stationary distribution is taken as Gaussian
with mean Cr@ and variance 1/4Cggq. All three mod-

b els employed the Shea—Ackers model.

n
o
T

Cro2 (nM)

0 i li A 1 L 1 1 L
5 10 15 20 25 30 35 40
Time (min)

reaches its steady-state value. The QSSA, consequentltochastic frameworf In the Michaelis—Menten example,
overestimates the amount of Cro dimer. The example agaiwe assumed that the reactions occur in isolation and that the

demonstrates the limits of the QSSA. amount of enzyme is fixed. In most biological systems, these
assumptions are violated. Most reactions occur in highly in-
VII. CONCLUSION tegrated networks. The amount of enzyme is not fixed,;

The QSSA s a powerful tool for simplifying the reaction rather, the enzyme cor_wcentratlon is controlled by a number
kinetics, and it has been successfully applied to numerougf regula}to'ry apd enwro.nmental factors: Furthermore, the
problems in deterministic kinetics. We have demonstrate"ZYMe is inevitable subject to degradation, due to, for ex-
how the QSSA may be applied to stochastic kinetics. Ou,ample,. proteolysis. However, on the time scales of interest,
experience to date suggests that the conditions for the QSSRese issues are rarely of concern.
in stochastic kinetics are the same as for deterministic kinet- \We have illustrated through example how the QSSA can
ics. We expect exceptions, though it is not clear whethesignificantly reduce the computationally complexity. While
these will be contrived. We emphasize that the same limitathis speedup makes the QSSA important in its own right, the
tions of the QSSA in the deterministic case also hold in therue strength of the QSSA, we believe, is as a tool for model

35 T T T T T T T
30} . It " X 4
25| i S _ FIG. 6. The time course of Cro dimer concentration
’ o using the modified Gillespie algorithm for an average
BN cell lifecycle when the rate Cro dimerization is 0.0005
=0l ey | M~1s™! and dissociation is 0.005 & The solid lines
E o show mean concentration of the Cro dimer and the
~ dashed lines show one standard deviation away from
8 s the mean concentration. The mean and standard devia-

tion were evaluated using 50 000 realizations of the sto-
chastic model. The black lines denote the exact solu-
tion, while gray lines denote the solution when the
101 T e E QSSA is applied to the Cro dimer. One standard devia-

; . T e tion less the mean of the exact solution is not shown as
it is less than zero.

0 Il 1 1 1 1 L I
0 5 10 15 20 25 30 35 40
Time (min)
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